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the geostrophic drag on a slowly rising particle 
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We consider the slow axial motion of a symmetric particle or drop in a bounded 
rotating fluid for small Rossby and Ekman numbers, Ro and E .  Previous investigations 
pointed out that the available linear-theory results, based on the assumption of a 
dominant geostrophic core and infinitesimally thin viscous layers, yield a drag force 
larger than the available relevant experimental results, and are unable to explain 
some of the observed flow-field properties, for both solid and deformable particles. 

Here we attempt to improve the drag calculation model and the interpretation of 
the flow field by incorporating shear effects in the core (outside the Ekman and 
Eli3 Stewartson layers), first in the linear (Ro = 0) formulation, then with keeping 
some influential nonlinear inertial terms for small but finite Ro. The major equation 
for the angular velocity in the core, w(Y), was usually solved by a finite-differences 
method, because in the practical parameter range the available analytical results are 
sufficiently accurate only for a disk particle or for a bubble. Results for various 
E = (iH)1/2E’/4, no-slip parameter of particle surface K ,  and half container height H 
are presented for both spherical and disk particles. The drag is below the geostrophic 
value, typically, by 25% for E = 0.1 and by 50% for E z 0.5. The inclusion of the 
inertial terms causes the lateral (‘vertical’) shear regions to contract and expand on 
the upstream and downstream sides, respectively, and an inertial sublayer appears in 
the latter when Ro = O(E3/4) ,  but the net contribution to the drag is smaller than 
expected. Compared with more accurate solutions and experiments the present results 
underestimate the drag (the reasons are discussed) but are qualitatively consistent in 
many respects, which indicates that many of the observed flow-field features that have 
been traditionally attributed to inertial effects (not sufficiently small Ro) are, rather, 
by-products of the lateral shear (finite value of e). 

1. Introduction 
Consider the slow motion of a particle in an incompressible fluid in a container of 

length 2H’ rotating with a* around the axis z ,  as sketched in figure 1. The particle 
has fore-aft and axial symmetry and the radius of its circumscribing cylinder is a’. 
Let W * i  be the velocity of the particle, and p’ and v’ the density and kinematic 
viscosity of the fluid; an asterisk denotes dimensional variables. 

The major dimensionless parameters governing the flow field generated by the 
motion of the particle are 
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FIGW 1. Sketch of the configuration. The lengths are scaled with the equatorial radius of the 
particle, a*, and the velocities with the rising velocity of the particle, W', but w = E1/*v/r. The 
cylindrical coordinates system rotates with the rigid 'horizontal' plates and moves with the centre 
of the particle. See also figure 12. 

The Ekman number, E ,  expresses the typical ratio of the viscous to Coriolis effects in 
the fluid (the inverse is the Taylor number, T ,  of the particle). The Rossby number, 
Ro, a ratio of the convective to the Coriolis accelerations, estimates the relative 
importance of the inertial nonlinear terms. 

The values of E,Ro and H of interest are, respectively, very small, small and 
moderately large. For example, we would like to consider E - Ro - H - 
5-20, which correspond to some accessible experiments. 

For deformable drops the surface no-slip parameter, 

where p = ( ~ ; ) R O P / ~ * ) ( ~ ; ) R O P / ~ * ) 1 ~ 2 ,  is also of importance. It expresses the transport 
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efficiency of the Ekman layer on the drop interface relative to a similar solid surface, 
hence 0 < K < 1.7 In addition, the Bond number should be specified if the shape 
function, f(r), is not given, see below. 

The available relevant classic theory, developed by Stewartson (1966) and Moore 
& Saffman (1968,1969), is the linear (Ro = 0) approach, by which the flow field 
has been treated in the asymptotic E + 0 limit as a superposition of z-independent 
geostrophic ‘cores’, Ekman boundary layers and Stewartson shear layers on the 
cylinder circumscribing the solid particle. 

Recently, Ungarish & Vedensky (1995) solved this linear flow-field problem for a 
disk particle by transform methods for arbitrary H and E ,  but no extension of this 
improved solution to other particle shapes is available. 

The drag force, D ,  which is of major concern in practical applications, turns out 
to be a still unsolved issue. The well-known dilemma was produced by Moore 
& Saffman’s ( 1968) prediction, derived under the geostrophic-flow approximation 
(i.e. without accounting for the Stewartson layers), for a rigid sphere, 

Maxworthy’s ( 1968) experimental attempts of verification yielded smaller values, 
typically by 20% for the attained range of small E and small Ro. This discrepancy 
cast doubts on the usefulness of the linear theory in this problem. 

Bush, Stone & Bloxham (1992,1995) made an important extension of the previous 
asymptotic results to the case of buoyant bubbles or drops in circumstances which 
allow for decoupling between shape and motion, and derived the corresponding 
geostrophic drag force formula, which is similar to ( 3 )  but with the leading coefficient 
increasing from 43/105 to 1 as K decreases from 1 to 0. Bush et al. (1995) also 
performed relevant experiments which, again, show that the actual drag force is 
smaller than the geostrophic prediction. 

The abovementioned experiments also revealed that the velocity field deviates from 
the geostrophic solution: a radial flux was observed in the interior and the angular 
velocity measured on the axis was smaller (in absolute value) than expected. 

The discrepancy between theory and observations in drag force and other flow-field 
features was attributed to the neglected nonlinear terms (i.e. not sufficiently small Ro 
in the experiment; Maxworthy 1968 suggested the value Ro < 10-3E2/3 as necessary 
for compatibility, more than 100 times lower than that attained). However, Barnard 
& Pritchard (1 975) remarked: 

A correction for the effect of the finite thickness of the free shear layers in the theory of 
Moore & Saffman would almost certainly reduce the discrepancy between the theory and 
the measurements. Whether this would then lead to satisfactory agreement must await the 
appropriate calculations. 

The idea expressed in this remark is, basically, the motivation of the present 
research. Two additional related goals are the following. (i) To investigate in a 
quantitative manner the influence of the inertial terms on the flow field and on the drag 
when Ro is small. The previous theories provided restrictions of the form Ro4 E“Hb, 
where a and b are positive fractions, but did not indicate what modifications appear 
when Ro > 0. (ii) To verify the conjecture that, in the practical range of E and H ,  
the ratio D / D o  for a disk approximates well this ratio for a sphere (we note that 

3 00, i.e. K + 1, recovers the solid particle, but t In the case analysed in this paper the limit 
this is not generally correct. 
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the geostrophic Do for a solid sphere is about 18% lower than Do for a disk). This 
conjecture was used ad-hoc by Ungarish & Vedensky (1995) and yielded surprisingly 
good agreement between the values of D/Do given by the 'exact' linear disk solution 
and the measurements of Maxworthy (1968) for D/& for a sphere at small E and Ro. 

To investigate these issues we employ a quasi-geostrophic model, first for Ro = 0, 
then with some inertial modifications. The main assumption is that the Ell3 layer is 
thin, but no such restriction is imposed on the adjacent shear regions (i.e. the 
and E2/7 'layers'). This model has in its background the idea that the flow field is 
typified by the leading terms of a proper asymptotic expansion in the small parameters 
E and Ro, but the rigour and complexity of such a procedure are simplified here 
by some looser judgments about the expected leading balances and 'evidence' from 
related problems. We shall show that the resulting model is quite simple to solve and 
interpret, and provides important clues to the observed behaviour of the drag and 
other flow-field features. 

2. Formulation 
The considered geometry is sketched in figure 1. The cylindrical coordinate system 

r ,  8, z has the origin at the centre of the particle and co-rotates, with constant Q'2, 
with the container. The components of the velocity vector, u, are (u, v, w}. 

The variables are scaled using the radius a' of the particle's circumscribing cylinder 
and the rising velocity W',  as follows: 

(r*,t*,u*,p*,D*} = u*r,(u*/W*)t, W*u, ___ W*v*p' p ,  W ' u ' p . a . D )  ' (4) 
U' 

where p* is the pressure (reduced by $p*Q'2r'2), D' is the drag force, p' and V *  are 
the density and the kinematic viscosity of the embedding fluid; the asterisk denotes 
a dimensional quantity. 

The equations of motion are 

(7) 

where 

Setting Ro = 0 in the momentum equation yields the important linear, quasi-steady 
formulation, which is the main framework of the present investigation, with the 
anticipation that the results are relevant to practically small values of this parameter. 
Some modifications for small but non-zero Ro are considered later. The Ekman 
number E is assumed small (but non-zero). 

The particle is considered axi-, fore- and aft-symmetric, i.e. its shape is given by 

z = +J(r), 0 < r d 1, (9) 
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and is placed in the midplane of the container, see figure 1. Consequently, in the linear 
theoryframework it is sufficient to perform the analysis in the 'upper' or 'upstream' 
domain 0 ,< z 6 H ; u , u  and p are antisymmetric with respect to the z = 0 plane. 
The midplane symmetry assumption is of course very restrictive from a practical 
point of view. However, it can be argued that in the range of parameters under 
investigation the drag is only slightly affected by axial displacements in the range 
f0.5H around the midplane. This was confirmed by several calculations for off- 
middle positions (Appendix D), and by the experimental data (T. Maxworthy 1995, 
personal communication; Bush 1993, figure 5.6). 

For a rising drop or bubble (9) requires justification, because in general the shape 
may be asymmetric with respect to z and may depend on the motion. Bush et al. 
(1995) show that when Rod lt and g*/S2*2a* 4 1, where g' is the gravity acceleration, 
the ellipsoidal shape is dominated by the centrifugal-surface tension balance which is 
independent of both the axial coordinate z and the flow field induced by the particle's 
translation. In this case f ( r )  depends on the rotational Bond number, 

C = -52*2a*3(p* - pLRop)/80* (10) 

and can be calculated directly from equation (A3) of Bush et al. (1992); O* is the 
interfacial tension. For small C the drop is almost spherical. 

Thus, f(r) can be considered a prescribed function from the viewpoint of the linear 
flow-field analysis for either solid particles or drops in a dominant centrifugal field, 
g'/S2*2a* d 1. For non-, fore- and aft-symmetric particles an extension of the present 
analysis is possible but the details are cumbersome. 

3. The quasi-geostrophic model 
Obviously, Ekman layers of typical thickness E 1/2 will appear on the boundaries. In 

addition, the analysis of Moore & Saffman (1969) produces the following important 
background points for the present investigation : 

(i) On the circumscribing cylinder r = 1 'vertical' inner Stewartson shear layers, of 
typical thickness ( I ? H ) ' / ~ ,  appear. We shall assume that (EH) ' /3  B 1. 

(ii) Outside the Ekman and the layers the flow is z-independent. Moreover, 
owing to the symmetries with respect to z = 0 in the present problem, the torque- 
free particle does not rotate and in the external region r > 1 the flow vanishes. 
Consequently, the boundary condition for u in the region r < 1 is u(r  = 1) = 0 
(= O(H-'/6E-5/12), while the value in the interior is O(E-'l2)).  
The equations of motion (5) - (8)  in this linear 'quasi-geostrophic' interior are, therefore, 
approximated by 

d l d  
dr r dr 

2u = E---ru; 

aw 
r dr az ru + - = 0. 
I d  -_ 

t The practical restriction is R ~ d E ' / * p ' / l p '  - p; )ROP/  which is difficult to satisfy in experiments. 
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The difference between this ‘quasi-geostrophic’ approach and the extensively used 
‘geostrophic’ approximation is in (12). In purely geostrophic regions the radial motion 
in the interior is neglected, i.e. u is set zero, and the entire radial volume transport 
is assumed to be performed by the Ekman layers. However, some prominent and 
facilitating features of the geostrophic model carry over to the extended model, in 
particular the z-independence of u,u and p and the essential interaction with the 
Ekman layers. Moreover, the geostrophic case is a straightforward limiting case (or 
‘outer’ asymptotic solution) of the quasi-geostrophic one. We note that Moore & 
Saffman (1969) used the term ‘viscous Taylor column’ for quasi-geostrophic domains. 

The importance of the quasi-geostrophic model in the present configuration is in 
the fact that the angular velocity in the core can be obtained from the solution of a 
single ordinary differential equation. Letting 

w(r) = E1I2u(r)/r,  (15) 

the key equation, for the upper side f + ( r )  < z < H-,  0 < r < 1-, is 

subject to 
d o  
- = 0 at r = 0, 
dr 

o ( r  = 1) = 0; (18) 
The details are given in Appendix A. Unless stated otherwise we consider w and u 
on the upper side, and a change of sign is necessary for the lower side. 

The parameters entering this equation are 

(19) E = ( ~ H )  E 114 , 

which is the e-fold thickness of the classic outert Stewartson 1/4 layer; IC, the particle 
surface no-slip parameter, see ( 2 ) ;  and H .  We shall bear in mind the obvious geometric 
restriction H > fmax(r )  = f(0). 

Equation (16) is a volume flux balance. The first term represents the transport in 
the core. The second term is the contribution of the Ekman layers on the horizontal 
solid boundary and on the particle (the latter is modified by the no-slip factor K ) .  The 
right-hand-side term comes from the axial motion which drives (or compensates) the 
radial volume transport. 

We remark that the model (16)-(18) with K = 1 was formulated by Moore & 
Saffman (1969), but has not been implemented in the configurations considered here. 

When o ( r )  is known the radial and axial velocities can be readily obtained via 
(A 7) and (A 9) in Appendix A, and the pressure via (1  1) with the boundary condition 
p ( r  = 1) = 0. In particular, the pressure difference yields the drag force, in the 
direction -z, as 

1 

D = 47~E-~/* lo(r))r3dr. (20 )  

The shear contribution to the drag is smaller, of order E-l, and therefore discarded. 

7 We use the term ‘outer’ for the layers that embed the 1/3 ‘inner’ layer. 
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The geostrophic result is the outer solution of (16) in the asymptotic limit E -+ 0, i.e. 

1 
wo = - 

1 + K (  1 + f,2)1/4. 

The geostrophic result is denoted by the subscript 0 because it can be interpreted as 
the zeroth term in an expansion in powers of E .  We can readily distinguish two cases: 

(i) For inviscid particles, IC = 0, and for disk particles, f ’ ( r )  = 0, 00 is a constant. 
The boundary condition (18) evidently requires a boundary layer of thickness O(E),  
the classic outer Stewartson 
The geostrophic drag, see (201, is simply 

shear layer. 

Practically, K = 1 for the disk geometry, but other values of IC may have some 
theoretical merits as discussed later. In particular, for K = 0 the shape is unimportant. 

(ii) For ellipsoidal viscous or solid particles 00 varies with r .  Since If’(r)l -P co 
and 0 for I -+ 1 and 0, respectively, the outer solution 00 satisfies both boundary 
conditions (17) and (18) and the necessity of the shear layer at r = 1 is not evident. 
The typical example is the solid spherical particle, f ( r )  = (1 - r2)ll2,  IC = 1, for which 
(21) and (20) yield 

(1 - r2)’I4 
1 + (1 - r2)1/4 ’ 

0 0  = - 

these are the well-known results of Moore & Saffman (1968), whose disagreement 
with Maxworthy’s (1968) experiments cast doubts on the ability of the linear theory 
to predict realistic flow fields. 

It is easily verified that a big portion of the geostrophic drag force is contributed 
by a thin annulus near the equator. For the solid sphere 29% of DO is provided by 
0.9 < r < 1, and an additional 13% is gained in 0.85 < r < 0.9. 

The geostrophic drag depends strongly on the no-slip factor IC, as seen in figure 2. 
When IC decreases, the contribution of the Ekman layer on the particle to the volume 
transport also decreases. This is compensated by a larger 101 which increases the 
volume transport in the Ekman layers on the ‘horizontal’ solid walls of this bounded 
configuration. The decreasing contribution of the particle makes its geometry less 
relevant to the drag; therefore, as IC decreases, the difference between the drag forces 
on a disk and on a sphere diminishes. 

The major question is how the apparently small, O(c2), shear term in (16) affects 
the flow fields and, in particular, the drag force. Moreover, we would like to know 
what happens when E is not small, in which case the geostrophic approximation is 
obviously not valid. We emphasize that in the experiments of Maxworthy (1968) and 
Bush et al. (1995) F: was larger than 0.1 and usually smaller than 0.25. In this context 
it is worth reformulating (A7), on account of (21), as 

which emphasizes the fact that deviations from the geostrophic 00 are accompanied 
by the appearance of O( 1) radial motion in the core. 
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FIGURE 2. Geostrophic drag us. K for disk and sphere. 

We proceed as follows. First, we discuss analytical approaches: when f(r) = 0 
(a disk) an exact solution to (16) is available, which yields good insight for both 
small and O(1) values of E, see $3.1. For f ( r )  = (1 - r2)lI2 (a sphere) an asymptotic 
approximation for E + 0 is available, but it turns out to be rather useless for practical 
values of E (> lop2, say), see $3.2. Next, in $3.3, we discuss numerical results of 
(16) and (20). In $4 we consider some nonlinear modifications of (16) and (20). 
Comparisons with other theoretical results and with experiments are discussed in 95. 

3.1. Solutions for the generalized disk and for the inviscid particle; the Ell4 layer 
Consider the thin-disk limit of the particle shape, f ( r )  = 0. To facilitate comparison 
with drops, this disk is generalized in the sense that we allow for (partial) slip on its 
surface, represented by the parameter K in (16), although, in practice, IC = 1 for this 
geometry. The disk results have convenient mathematical and physical properties and 
are useful references in this study. The subscript d denotes results for the disk particle. 
Unless specified otherwise the domain considered is 0 d r < 1, O+ d z < H - .  

It is readily verified that for f ( r )  = 0 the exact outcomes of (16)-(18) and (20), for 
any E, are 

where 

also, in view of (12), 
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FIGURE 3. Disk: (a) angular velocity us. r ,  for various ~ [ 2 / ( 1  + IC]'/*; ( b )  drag us. E [2/(1 + ~ 1 ~ ' ~ .  

Recall the scaling u = E-'/2rco, i.e. the azimuthal velocities are actually O(E- ' /2 )  
as compared to the translation velocity of the body. 

The behaviour of wd and Dd is shown in figure 3. Evidently, the dependency on 
E is strong: as E increases IwJ becomes smaller than the geostrophic prediction, 
first near r = 1, then for all r. For further insight, we 
perform straightforward expansions of the Bessel functions to obtain the following 
results. 

The drag decreases. 
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( a )  For small Y E  (< 0.2, say) 

1 
1+IC 

cod = -___ [I -exp (%)I ; 

Evidently, for E + 0 the geostrophic flow results are recovered. The terms associated 
with the exponent in (30)-(32) represent the ‘vertical’ Ell4  boundary layer, whose 
thickness (slightly) increases when IC decreases. This layer is obviously needed to 
satisfy the boundary condition Od(r = 1) = 0. Note the non-monotonic behaviour 
of the axial velocity: in the geostrophic interior outside the Ell4 layer the flux is 
O(1) toward the particle, but in the layer the flow is O ( ~ / E )  and from the particle 
(i.e. the Ekman layer) into the interior (this is best seen by taking IC = 1 and z = 0). 
The influence of this layer on the drag is very significant, causing the variation 
AD1/4/Do M -4~s .  

(b)  For non-small Y E  (> 1, say) 

We note that the leading-order terms do not depend on IC; actually, they reproduce 
a complete core flow, without an Ekman layer contribution, which differs essentially 
from the geostrophic flow. By using the identity E-’/H = EF3I2/2c2 we emphasize 
the fact that (36) is much lower than the geostrophic prediction (22). The leading 
terms in (34)-(36) are in agreement with the results for the long container case in the 
limit of small (EH)’l3 obtained by Hocking, Moore & Walton (1979). 

Now consider two inviscid particles, IC = 0, one a disk f(r) = 0 and the other 
an ellipsoid 0 = f(1) < f(r) < f(0). The formulation (16) for the latter particle 
differs from that for the disk only by the coefficient [l - f ( r ) / H ]  which multiplies 
E ~ .  We therefore realize that, in general, if f(O)/HGl, the inviscid disk solution is 
an accurate approximation for the inviscid ellipsoidal particle. Moreover, for small 
E good accuracy is achieved under the much milder f(1 - J&)/HGl  requirement 
because for r < 1 - $E the flow is geostrophic, see (30), and independent of the 
particle-to-wall distance H. 

3.2. Asymptotic solution for spherical particles; the E2/’ sidelayer 
For a rigid disk particle the geostrophic outer solution to (16), cod0 = -1/2, does not 
satisfy the boundary condition w = 0 at r = 1. The appearance of the outer 
Stewartson shear layer is obviously triggered by this unmatched condition. On the 
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other hand, consider a spherical solid particle, f(r) = (1 - r2)’I2,  IC = 1 (extensions 
to other values of ic and other similar shapes is straightforward). Although the 
geostrophic (outer) solution to (16) satisfies the boundary condition w(r = 1) = 0, see 
(23), a shear layer at r = 1 must appear. 

As indicated by Stewartson (1966), this effect is triggered now by the fact that, as 
r -+ 1, d2wo/dr2 grows without limit, hence the first term in (16) must be incorporated 
in the balance in spite of the small E .  In the physical sense, this means that the shear of 
w as r -+ 1 is large and hence able to support a significant radial motion, u - 1, in the 
core. Consequently, the contribution of H u  to the volume transport is commensurate 
with the flux in the Ekman layers and must be incorporated. 

To this end, we consider the spherical particle and r close to 1, and so let 

x = l - r + l ;  

and substitute in (16) to get 

(1 + i x  + . . .)CO - co = 1. (38) 
1 

(G d2C0 - G d x  dw)--  (2414 
(2x)’/2 + . . . 

2&2(1 - 
H 

The leading balance in (38) for small x and E is 

d2w 0 
2&---= 1, dx2 (2x)’I4 (39) 

which indicates a boundary layer of thickness x - - c2I7. 
For a detailed solution of this layer, following Moore & Saffman (1969) we introduce 
the stretched coordinate s and the rescaled angular velocity G, 

= E2I7H4l7 in which 

s = x/A; G = --u)/B, where A = 2517&817; B = (2A)’I4; (40) 
which reduce (39) to 

subject to the boundary conditions 
G”(s) - G(s)/s’I4 = -1, 

G(0) = 0; G ( s ) / s ’ / ~  -+ 1 at s -+ 00. (42) 
The solution of (41)-(42), see Appendix B, is displayed in figure 4. For small 

s, G(s) = 1.01s - 0.50s2, and at s = s1 = 5 the solution G(s) reaches 98% of its 
asymptotic value &I4. We therefore can define that the edge of the E2I7 layer is, 
approximately, at s1 = 5,  i.e. at x1 = 1 - rl = 5 x 25/7~8/7 = 5 x 2’1’ x H4I7E2/’. 

The solution of (16) for a rigid sphere and small E is now approximated by the 
following patching: w = wo(r), see (23), for r < 1 - ce8I7 and o = -B G[(1 - r ) / A ) ]  
for 1 - C E ~ / ~  ,< r < 1, where c = 5 x 25/7 if the boundary layer thickness is defined 
as above. 

The radial motion in the layer, according to (25), is 
1 

2H u = - [l  - G(s)/s”~], (43) 

which can be compared to (31). For small s, G ( s ) / s ’ / ~  - s3I4 and u = 1/(2H). Thus, 
like in the Ell4 layer on the disk, the major volume transport in the radial direction 
as r + 1 is performed in the core by the 271rHu term, not in the Ekman layers. This 
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0 1 2 3 4 5 6 

FIGURE 4. G(s) and s1I4 us. s in E2I7 sidelayer. 
S 

can also be noticed in (41): the second term on the left-hand side, which represents 
the Ekman layer transport, is O ( S ~ / ~ )  for small s. 

We note that this analysis can be straightforwardly extended to non-rigid spheres, 
K < 1, by taking A = 25 /7~8 /7~-4 /7  and B = (2A)1/4~-1. The thickness of the layer 
increases as the viscosity of the particle decreases. Similarly, for a drop, as inferred 
from Bush et al. (1992, Appendix) and Bush et al. (1995), the shape is typically 
modified such that 

[l - 2x(1 + 22)  + . . *I 1 
f'2 w 

2( 1 + 2C)x 
where C is the (small and negative) Bond number; therefore A and B should be 
further multiplied by (1 + 2C)'/7 and (1 + 2C)1/4 respectively. The layer becomes 
thinner because the inclination of the particle near r = 1 increases. 

Now using (20) we consider the addition to the geostrophic drag due to this layer, 

AD217 = - ~ T c E - ~ / ~  [O - 00](l - x ) ~ ~ x  LX' 5 

w ~ T c E - ~ / ~ A B  L [G(s) - ~ ' / ~ ] d s  = - ~ z E - ~ / ~ A B  x 0.86. (44) 

Hence, with the aid of (24) 

We notice that for E = 0.13 the drag reduction predicted by (45) is loo%, which 
of course is not physically acceptable, so we begin to suspect that the asymptotic 
analysis of the E2/7 layer is restricted to much smaller values of this parameter. In 
contrast, for a disk the discrepancy between the approximation AD1/4/D0 = -4ys and 
the exact drag reduction obtained from (27) at E = 0.13 is less than 20%. 
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FIGURE 5.  w us. r,  E = 0.05, H = 5, rigid sphere: geostrophic result (23), E2/' layer asymptotic 
approximation (41)-(42) for s < 5 ,  and numerical solution of (16)-(18). 

Indeed, from the analytical viewpoint, it turns out that the accuracy of the E2I7 layer 
correction to the geostrophic flow on a sphere is restricted to considerably smaller 
values of E than that of the layer on the disk. This must be emphasized, because 
it is counterintuitive. One is inclined to argue that the thickness of the boundary 
layer sets the restriction on the accuracy of the approximation. Therefore, since the 
E2l7 layer is asymptotically thinner than the layer, the domain of validity of the 
E2/7 layer approximation is expected to be larger than the domain of validity of the 

layer. This argument fails here due to a mathematical difficulty: while the E114 
layer for the disk is matched to the correct constant outer value COO, the E2/7 layer 
for the sphere is matched (rather, patched) at r = 1 - x1 to an approximation to the 
geostrophic flow which has an inherent relative error of about ( 2 ~ ~ ) ' / ~ .  Evidently, 
the outer solution of (39) is - ( 2 ~ ) ' / ~ ,  while the geostrophic flow (combine (23) with 
(37) ,  or take the outer solution of (38)) is 00 = - ( 2 ~ ) ' / ~ [ l  - (2x)'14 + O(x'/*)]. 
To get less than 10% discrepancy at the matching point we need x1 < 5 x 
i.e. H 2 E  < 2.2 x 1O-Ix; for H 2 E  > 3 x the approximation at x1 deviates by 
more than 100%. Figure 5 illustrates the big overshoot of the approximation (39) for 
E = 5 x 

This difficulty can also be spotted at the stage of replacing (38) by (39), which 
requires the assumption that (2x)-ll4 2 1. Physically, this means that the 
inclination of the Ekman layer on the sphere is assumed so large that the Ekman 
layer on the non-inclined container wall, represented by the last term in the left-hand 
side of (38), can be neglected. 

The E2/7  layer accuracy requirement, say H 2 E  < lo-'', is also consistent with the 
condition ( H E ) 1 / 3 < H 4 / 7 E 2 / 7 ,  i.e. the shear layer is considerably thinner than the 
quasi-geostrophic layer. 

However, in practical and experimental devices the typical values of H 2 E  are above 

(i.e. H 2 E  = 2.5 x 

hence the results for the E217 layer theory are only of academic interest. 
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In other words, although the strength of the Ekman layer on the sphere is indeed 
increased due to the local inclination, this enhancement is really important only for 
x = 1 - r 5 lop4. For larger values of x the difference between the sphere and the 
disk geometry, from the point of view of the Ekman layer, is not significant and the 
flow field will probably tend to the shear layer arrangement if the E2l7 layer is 
not sufficiently thin to be encompassed by the former region. 

Reconsidering (38)-(41) we find that the approximation (39) is much improved if 
we add (rather, keep) the term -co in the left-hand side of (39). The outer solution 
of the thus modified (39) is -[1 + (2~)-l/~]- '  which recovers the geostrophic flow 
within less than 10% for any 0 < x < 1 (the original (39) requires x < 5 x 
for such accuracy). However, we could not find a simple asymptotic solution of this 
improved equation, and when a numerical approach is considered the original (16) 
can be solved with the same effort. 

3.3. Numerical solutions 
The finite differences solution of the quasi-geostrophic equation (16) subject to the 
boundary conditions (17)-(18) was performed on a uniform mesh, see Appendix C. 
The reported results, with E 0.05, were calculated with mesh interval 6 r  = 1/400, 
so that at least 20 mesh points were available in the sidelayer. The integration of (20) 
for obtaining D was performed by the rectangle rule. The accuracy was ascertained 
by the disk configuration, f(r) = 0: the exact results (26) and (27) were recovered 
with four correct significant digits. 

Figure 6 displays the profiles of o us. r on a rigid sphere. The influence of E is 
very significant: the relative discrepancy with the geostrophic profile, 1 - o/coo,  is, 
roughly, 1 at r = 1 and E at r rn 1 - E. For E 2 0.2 the 'sidelayer' spreads into the 
entire core and o on the axis is reduced; the profiles bear strong resemblance to 
the disk counterpart, see figure 3(a). Similar calculations (not shown) indicate that 
the above-mentioned features are only slightly modified when H increases from 5 to 
larger values: for E < 0.1 the profiles are practically unchanged, and for E >, 0.2 the 
value of Ico(r)l is slightly reduced and the resemblance with the disk is enhanced. This 
influence of H can be readily inferred from (16). 

The radial velocity in the core is O(1) in the region where o differs significantly 
from the geostrophic result, cf. (25). 

The above-mentioned behaviour of co is, as expected, reflected in the features of 
the drag force, D, as seen in figures 7 and 8. Figure 7 shows the influence of E on the 
quasi-geostrophic drag on a rigid sphere: starting with the geostrophic value DO at 
E = 0, an almost linear decrease to 0.5Do as E = 0.2 occurs; then, at slower rates of 
decrease, 0.2Do and 0.1Do are.obtained for E rn 0.5 and 0.7, respectively. 

Figure 8 displays the ratio D of a sphere to Dd (of a disk) us. ~ [ 2 / ( 1  + K ] ' / ~ ,  for 
different no-slip parameters K and particle to wall distance H. (The combination 
~ [ 2 / ( 1 + ~ ] ' / ~  is used because this is the e-fold thickness of the 1/4 layer for a non-rigid 
particle, as indicated in $3.1. Recall that for rigid particles K = 1.) This figure is 
connected with (27) (or figure 3(b)) which provides Dd for any ~[2 / (1  + K ] ' / ~ .  The 
presented results cover a wide range of configurations and can be used for comparison 
with experiments. 

the ratio D/Dd is quite close to 1 for 
~ [ 2 / ( 1 +  ~ ' 3 ~ 1 ~  > 0.1 provided that H 2 10. It should be emphasized that, in the range 
0.1 < r[2/(1 + J C ] ~ / ~  < 1, D d  decreases by a factor of about 15. This confirms the 
strong analogy between the quasi-geostrophic flows on a disk and on a sphere when 
~[2 / (1  + K ] ' / ~  > 0.1, which was indicated by figures 6 and 3(a). 

The conclusion is that, for a given IC, 
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4. Some inertial modifications 
The setting Ro = 0, which was used in the foregoing sections, yields serious 

uncertainties about the validity of the results for small but non-zero values of Ro. 
Suppose we expand the flow-field variables in powers of Ro. The leading terms 
are given by the foregoing linear theory results. A subsequent order of magnitude 
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consideration of the terms of (5)-(7) indicates that, for small E at least, the largest 
inertial terms appear in the shear regions associated with the shear term of (16). 

This realization has been used in previous studies for estimating the 'effective' 
Rossby number as RoEPaHPb and thus obtaining restrictions of the form R o 4 E a H b  
for the formal accuracy of the leading term (linear theory) results. In particular, in 
the azimuthal momentum balance (6), the term Rou(i3vlar) is, formally, as important 
as the linear Coriolis term 2u when Rov/G - R o E - ' / ~ c o / ~  is of order unity, where 
the values of w and of 6 (the thickness of the shear layer) are provided by (16). 

Moore & Saffman (1968), using for a sphere the estimates 6 - E * / ~ ,  w - c2l7, 
see (40)-(39), derived the restriction R o ~ E ' / ~ E ~ / ~  m E5/7H3/7.  Similarly, for a disk 
6 - E ,  m - 1 giving the even more restrictive R o B E ' I ~ E  NN E3/4H1/2.  

The important question is : what are the leading inertial modifications, i.e. what 
happens to the flow field when Ro, although sufficiently small for keeping the linear 
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theory balances dominant, is nevertheless big enough for making some inertial terms 
quantitatively comparable with the Coriolis ones. This question has been considered 
for several rotating-fluid problems, e.g. Wedemeyer ( 1964), Hide (1968), Barcilon 
(1970), Bennets & Hocking (1973), Bennets & Jackson (1974), but, to the best of 
our knowledge, not for the present rising-particle configuration. The source-sink 
problems discussed in some of these papers have common points with the present 
flow, especially for a disk: the upper shear layer drains fluid from the Ekman layer 
into the E113 sidelayer, like in a sink flow, and the opposite pattern occurs on the 
lower side of the particle, resembling a source flow (in view of the different scalings, 
the present Ro corresponds to RoE-*l2 in the above papers). However, the existing 
results cannot be carried over to our problem because of the different geometry and 
the fact that we are interested in the influence of Ro on the drag force. 

We proceed as follows. We assume that the Ekman layer transport (or 'suction') 
correlation is not affected by Ro in the range of investigation, and that the orders of 
magnitude of the flow-field variables with respect to E and H are like in the linear 
case. Therefore, keeping the largest terms in (5)-( 6) yields for the quasi-geostrophic 
core the radial and the azimuthal momentum equations (recall, o = orE-'12) 

d l d  ( 2  )] d r r d r  
1 + $RoE-Ir2 r- + 2w = E 1 f 2 - - - r 2 0 ;  (47) 

the axial momentum and continuity balances (13)-( 14) are unchanged. Comparing 
(47) to (12) we conclude that the modified form of (16) is 

where the - in the right-hand side is for the lower side of the particle, 

the boundary conditions are (17)-(18). Comparing (46) to ( I  1) we find that the drag 
is given now by 

D = 2nE-3f2 (ou(l +  ROE-'/^^,) - ul(l + ; R O E - ' / ~ C ~ ~ ) (  r3dr, (50) l 
where u and I denote the upper and the lower sides of the particle. 

The restriction on Ro now - but not the only one as discussed below - is 
;RoE-'124 1. Otherwise the time-dependent terms in the momentum equations are 
significant and the steady (actually, quasi-steady) state assumed here cannot be 
attained from simple initial conditions (Ungarish 1996). Evidently, when ; RoE-'12 
approaches 1 the absolute angular velocity, a*( 1 + RoE-' /~oI) ,  apparently approaches 
zero in the upper core and 2Q* in the lower core, and such big changes from a 
basic solid-body rotation must be accompanied by a large mass (angular momentum) 
transfer, i.e. an O ( H )  displacement of the particle. 

Equation (48) must be solved by iteration. Since in the linear case o is negative 
on the upper side and positive on the lower side, the factor (49) is anticipated to 
cause different qualitative behaviours in these regions. For the shear layers where 
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do/& is dominant, when Ro increases we expect a thickening in the lower region 
and a contraction in the upper region (essentially, like near a source and a sink, 
respectively). Therefore in the nonlinear case the antisymmetry of o with respect to 
z is lost, and we must use (50) instead of (20). The loss of symmetry also causes a 
rotation of the torque-free body, but this can be discarded, as justified later. 

Some indicative profiles of the angular velocity are displayed in figure 9. Compared 
to the linear case, we observe the following changes due to the inertial terms. In the 
upper part the shear layer is thinner and 1 0 1  in the core is smaller. In the lower 
part the shear layer is thicker and o in the core is a bit larger; moreover, here we 
also notice a peculiar change of the slope near r = 1, which actually reflects the 
appearance of an inertial sublayer for sufficiently large Ro. 

In this inertial sublayer the azimuthal Coriolis component is counterbalanced by 
convection of angular momentum. Indeed, it is easily verified that 

renders both sides of (47) equal to zero and satisfies the boundary condition w(r = 
1) = 0. The radial velocity in the sublayer can be calculated from the volume balance, 

u = (-1 + [l + ~ ( 1  +f'2)'/4]w}r/2H[1 - f(r)/H]. (52) 

We note that the angular velocity distribution (51) is stable with respect to Rayleigh's 
criterion, see Greenspan (1968, §6.2), hence no evident instability can be attributed to 
the inertial effects. 

We can argue the following. (a)  This sublayer is necessary when, taking the linear 
solution for o on the lower side and the actual Ro of interest, the function F(r) attains 
negative values. Hence it occupies at least the region where the thus-calculated F(r) 
is negative. For a disk geometry and small E this consideration, in view of (30), yields 
the thickness - - Y E  ln[2( 1 + ~)ys/RoE-' /~] which is evidently meaningful only for 
RoE-'l2 > 2(1 + ~ ) y s ,  i.e.  ROE-^/^ > 2(1 + K ) ' / ~ H ' / ~ .  However, for the sphere and 
other similar geometries the numerically calculated linear w should be used in this 
evaluation. This predicts the thicknesses 0.02 and 0.10 for the sublayer in the cases of 
figures 9(b) and 9(c) respectively, in fair agreement with the calculated profiles of 0 1 .  

(b)  The maximal extent of the inertial layer is estimated by the intersection between 
(51) and the geostrophic 00. This yields, approximately, 0.25R0E-'/~ for a solid disk 
and O.~(ROE- ' /~)~/~(  1 -  ROE-'/^)'/^) for a solid sphere (for RoE-'I24 1). 

Now we proceed to the drag calculations via (50). It turns out that the quite complex 
influence of the inertial terms on the profiles of o, and W I  almost counterbalance in 
the integral (50), hence the drag force decreases monotonically and quite mildly when 
Ro increases from 0 to - 10E3/4. For example, for E = 4 x H = 5, the drag force 
is 0.875E-3/2 and 0.796E-3/2 for Ro = 0 and 0.01, respectively (RoEP3I4 = 0 and 19.9); 
on the other hand, the corresponding geostrophic drag is 1.29E-3/2. The conclusion 
is that in the range of interest (say, E - 0.1 and Ro 5 0.01) the shear modifications of 
the geostrophic drag are more important than the inertial corrections. 

Similar results were obtained for other values of E and Ro and are summarized 
in figure 10 as D/(7rE-3/2/2) us.  ROE-^/^, following the suggestion of Maxworthy 
(1968) (in particular, figure 3 there; the difference in values between the effective 
Rossby numbers RoE-~ /~H- ' /~  indicated by the disk, and  ROE-^/^ used for historical 
reasons, is not significant in the range of parameters under discussion). Typically, the 
results are about 30% below the geostrophic value at Ro = 0 and decrease further by 
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about 2% as the effective Rossby number RoEW3l2 goes to 5 (RoE314 - 10). Some 
experimental points are also shown in figure 10, to be discussed later. 

The present inertial modifications of the linear theory are expected to be indicative 
when  ROE-'/^+^, but their accuracy is probably limited by two major factors. 

First, the linear Ekman layer transport (or suction) correlation used in (48) requires 
quantitative corrections for larger Ro. Actually, when in the shear layer the inertial 
terms become as big as the Coriolis terms, the same is expected to happen in the 
Ekman regions, where the inertial modifications are complicated. Thus we estimate 
that the effective Rossby number is N  ROE-^'^ also in the Ekman layer. There are 
good indications that even when the effective Rossby number in the Ekman region is 
of order unity the linear correlation approximates well the integral transport feature 
(e.g. in the von Karman and Bodewadt problems), but this still leaves the limitation 

Second, the incorporation of the inertial terms breaks the flow-field symmetries 
with respect to z = 0, and begins to affect the validity of the boundary condition 
o ( r  = 1) = 0. The appearance of the inertial layer on the lower side is probably the 
limit of validity of that symmetric condition, which was derived from shear balance 
considerations. 

Moreover, when the symmetry is violated a torque-free ( M  = 0) body will rotate, in 
contrast with the foregoing assumption. This rotation is, however, quite small when 
E and Ro are of the orders of magnitude considered here. For a solid particle the 
angular velocity op can be calculated from the dominant Ekman-layer friction torque 
formula, 

 ROE-^/^ 5 1. 

Since the difference between -0, and w1 is pronounced in the shear layer of thickness 
6 < &we expect from (53)  wp = 0[6 max(lo,+wjl)]. The max(lo,+q/) is proportional 
to Ro. It can therefore be estimated, using in (53) the values of w, and 01 obtained 
without particle rotation, that when E and RoE-'12 are small then cop is negative and 
considerably smaller than o in the cores. 

We speculate that this non-zero wp will have a secondary influence on the drag for 
the following reasons. Consider a symmetric geometrical configuration. The rotation 
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(without translation) of the particle does not create drag. For a rising non-rotating 
particle in the linear case the drag will not be affected if we add rotation (the additional 
angular velocities in the upper and lower cores are equal). Thus, the influence of cop 
on the drag of a rising particle is expected to enter only via the nonlinear influence 
of the additional rotation on the main flow field produced by the axial motion. To 
be more specific, the additional cop may further affect the factors F ( r )  given by (49) 
in the upper and lower regions, thus enhancing the contraction and thickening of 
the corresponding Stewartson layers. Since this asymmetry of the Stewartson layers 
contributed up to about 2% to the drag in the previous calculations, it is expected 
that variations in this asymmetry, even if O( l), will not contribute to the drag more 
than a few percent. (The leading term in (49), dw/dr,  is large in the asymptotic sense 
for small E ,  but in the practical cases, when E - 0.1, the numerical absolute value of 
this term is smaller than 5.) We could not find a clear-cut argument for predicting 
the direction of this additional drag modification. 

To substantiate these estimates we performed several more rigorous calculations not 
subjected to the symmetry assumptions. Some details and typical results are presented 
in Appendix D. It turns out that the rotation of the particle causes additional slight 
decrease of the drag, i.e. the discrepancy with the experiment increases. 

5. Comparisons and discussion 
Some useful conclusions of the foregoing analysis can be summarized. Taking 

E - 0.1 and H 2 5 as typical, we find the following. 
(i) The ratio of the quasi-geostrophic linear drag, D ,  to the geostrophic DO is lower 

than 1 by about 25% , and decreases with E (i.e. E and/or H increase). 
(ii) The ratios D I D o  for a sphere and for a disk are close; this compatibility 

increases with E and H .  
(iii) The core flow in a quite wide region 0.7 < r < 1 is affected by viscous effects 

and different from the geostrophic predictions. In particular, lw/ool < 1 and the 
radial motion has u = O(1). 

(iv) The inertial effects break the symmetry: the shear layer shrinks in the upper 
region (‘forward wake’) and thickens on the lower side (‘rear wake’) where also an 
inertial sublayer appears for Ro 2 E3/4H1/2 .  However, the net drag force decreases 
by only about 1 YO when Ro changes from 0 to - E 3/4. 

A clear-cut comprehensive verification of the present theory is not yet feasible. The 
available theoretical and experimental data are incomplete and/or deviate from the 
present set of assumptions in some respects, as follows. 

The relevant theoretical ‘exact’ results given by Ungarish & Vedensky (1995) cover 
only the rigid disk geometry for Ro = 0 and E 2 and do not always satisfy 
the assumption (HE)’ I3  Q 1. The comparison shows that the quasi-geostrophic model 
captures well the flow-field features outside the E l l 3  layer. However, in the verified 
range of E - 0.05-0.7 the quasi-geostrophic drag, although giving the correct de- 
pendency on E ,  was systematically below the exact value, see table 1 of Ungarish & 
Vedensky (1995) . This is attributed to the influence of the E l l 3  layers; indeed the 
discrepancy increases from 15% to 30% to 60% when varies from 0.04 to 0.1 
to 0.2, approximately. It is reasonable to infer a very similar behaviour for a spherical 
particle. 

The relevant experiments are these performed by Maxworthy (1968) with solid 
spheres and Bush et al. (1995) with drops of various viscosities; the indicative values 
of the parameters are E - Ro - lop2, H - 5-10. These reports are extremely 
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1 (HE)'I3 Label E x lo4  ROE-^/^ H E test -, here ~ - 
D D Dhere 

Do Dtest 
+2.5% 

0.40 0.1 5.15 0.128 0.90 0.68 -0.24 0.06 A 
0.40 1.6 10.50 0.182 0.76 0.54 -0.29 0.07 
0.53 0.6 5.15 0.137 0.82 0.65 -0.2 1 0.06 B 
0.53 1.3 10.50 0.196 0.77 0.51 -0.34 0.08 
0.67 0.9 5.15 0.145 0.82 0.63 -0.23 0.07 C 
0.67 2.3 10.50 0.207 0.65 0.49 -0.25 0.09 

TABLE 1. Comparisons with experiments of Maxworthy (1968) (test). (Note: for these cases 
E - 3 / 4 / E - 2 / 3  rn 2.3. The labels are used in figure 10) 

useful for qualitative comparison, but on the quantitative side we encounter the 
following difficulties : 

(a)  Maxworthy (1968) did not label the measurement points with the value of H .  
According to the general description of the apparatus, H was 5.15 in some cases 
and 10.5 in others, but for comparison we need to know the value at the point 
under consideration.? Moreover, even for the smallest E and H in the covered range, 
(EH)'I3 > 0.05. 

(b)  The experiments of Bush et al. (1995) were performed at typical E = 4 x lop4, 
therefore (HE)'13 > 0.13 for H - 5-10. Owing to the drop release device the lower 
boundary of the container deviates from the assumption of a flat solid wall and is 
rather closer to a fluid-fluid interface (Bush (1993, p. 84)); it can be argued that 
this weakens the Ekman layer there and increases the drag. Furthermore, in the test 
the Bond number C was small, indicating spherical drops, but g*/S2*2a* - 25. We 
assumed that this parameter is very small, otherwise the shape of the drop is not 
symmetric with respect to z = 0, see figure 15(b) of Bush et al. (1995). The resulting 
shape indicates an increase of drag, but we have no quantitative estimate for this 
effect. 

In both experimental investigations the flow-field patterns were scrutinized, and 
the time of motion of a buoyant particle along a known interval was actually 
measured; the corresponding velocity, W',  is proportional to 1/D (recall the scaling 
(4)). Maxworthy (1968) gives values of D (in various scaled forms), Bush et al. (1995) 
report values of W *  (scaled with the geostrophic rising velocity of a bubble). Both 
sources performed comparisons with the geostrophic model and concluded that, even 
for the smallest attained Ro, the drag is lower (the rising velocity is higher) than 
the predictions, and the flow field in the core displays some features (in particular, 
O( 1) radial velocity) that violate the expected pattern. These discrepancies with the 
geostrophic model were attributed to the neglected inertial terms, i.e. to the not 
sufficiently small Ro. 

The present theoretical investigation indicates that the above-mentioned trends 
observed by Maxworthy (1968) and Bush et al. (1995) can - or rather should - be 
first attributed to the shear in the lateral Stewartson layers. In the experiments the 
value of E was, typically, 0.1 - 0.2. Figures 6 and 7 show that for such values of E :  

(a)  the linear quasi-geostrophic drag is about 30% lower than the geostrophic one; 
(b)  the lateral shear layers are quite thick, therefore observable 'cores' of O(1) radial 

t Professor Maxworthy kindly searched his files for this information following the author's 
request, but could not retrieve it. 
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FIGURE 1 1 .  Drag us. K at E = 0.4 x lop3, for the sphere and two values of H .  

velocity are present, and w differs from the geostrophic prediction even near the axis. 
Moreover, figure 10 suggests that, for constant H ,  the quasi-geostrophic D / E - 3 / 2  
decreases when Ro and E increase. The same trends can be inferred from figure 3 
of Maxworthy (1968) and figure 12 of Bush et al. (1995). Figure 7 here shows that 
D decreases when E ,  i.e. increases if other parameters are unchanged. A similar 
behaviour is inferred from figure 11 of Bush et al. (1995), who also noticed that 
the rise speed (i.e. drag) is relatively insensitive to changes of ,8 (i.e. K ) .  Again, good 
qualitative agreement exists: figure 11 here shows that the quasi-geostrophic drag in 
conditions relevant to the experiments decreases only by about 25% when K varies 
from 0 to 1 (the geostrophic drag varies by about 60%, see figure 2). 

Some quantitative comparisons with points extracted from figure 3 of Maxworthy 
(1968) are given in table 1 (for two values of H) and in figure 10 (for one value of 
H). It is emphasized that we have inferred the values of H of the points under the 
assumption that for the same E the larger value of H corresponds to the smaller 
D, but we have no independent confirmation for this choice. The geostrophic drag, 
DO, overestimates the measured drag by about 25%. On the other hand, the present 
calculations underestimate the measured drag by about 25%, so that, in the strict 
sense, their accuracy is not superior. However, they predict the correct trend with 
respect to changes of the parameters in the experiment, while the geostrophic drag 
changes only with E.  According to the present estimates, see figure 10, in the range 
of  ROE-^'^ of table 1 the contribution of the inertial terms to D is less than 1%. We 
therefore claim that the quantitative difference seen in table 1 and figure 10 between 
the experiments and the quasi-geostrophic calculations is not caused essentially by 
the neglect of the inertial terms. We attribute this discrepancy to the following 
factors. ( a )  The E l l 3  shear layers are not really thin. The contribution of these 
layers, as inferred from the disk geometry, is expected to increase the drag above the 
quasi-geostrophic value. We are presently unable to calculate this contribution for a 
sphere. (b )  The measured D reflects an average over different positions of the particle, 
where the quasi-geostrophic drag force is expected to be, in general, larger than at 
the midway between the plates location assumed in the present theory. However, 
as indicated by calculations, see Appendix D, and by observations (T. Maxworthy 
1995, personal communication), this is a small effect, perhaps within the range of the 
measurement error. 
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From figure 11 of Bush et al. (1995) the quantitative behaviour of D us. E can 
be extracted as follows: in our context, the vertical axis corresponds to ~ T E - ~ / ~ / D  
(the numerator is the geostrophic drag on a bubble, see (22)), and the horizontal 
axis corresponds to 1/(2H). With the given a’ = 2 cm, and the general data of the 
experiment, we estimated E w 4 x Also given, a = 10, i.e. K = 10/11. Thus, 
figure 11 of Bush et al. (1995) shows that for E w 0.35 (the smallest value of 1/(2H)) 
R E - ~ / ~ / D  NN 4.1, and for F NN 0.2 the result is ~ T E - ~ / ~ / D  NN 3.0. Our calculations, 
on the other hand, give ~ T E - ~ / ~ / D  = 8.5 and 4.5 for these values of E (note that 
~ T E - ~ / ~ / D ~  = 2.3). The agreement in the trend of influence of E is, again, correct - 
but the discrepancy in drag is big. However, for these parameters the layers are 
really thick, (HE)’13 NN 0.12 and 0.17, a fact that can explain a discrepancy of about 
40%-60% in the observed direction. For the radial motion our calculations show 
that the variable u(2Hlr) = 1 - o/wo increases from 0.5 to 1 when r increases from 
rl to 1, where rl = 0.85 for E = 0.2 and rl = 0.24 for E = 0.35. 

Figure 10 of Maxworthy (1968) gives some measurements of UC)~ and 10,1 at r NN 0 
us. ROE-’ for 0.63 x lop4 < E < 2.5 x (i.e. 0.14 < E < 0.2 and 0.2 < E < 0.29 
for H = 5.15 and 10.5, respectively). The scatter is big, but 01 is always above Jw,I 
by several percent, and 0.5(01 + I w , ~ )  varies from 0.45 to 0.3, approximately. This is 
in good agreement with the present theory, which predicts that, for that range of E, 

o ( r  w 0, Ro = 0) varies from 0.49 to 0.36, and that 01 is above lo,/ when R o  > 0, but 
0.5(o~)l + lo,[) is just a bit below the linear results, see figures 6 and 9. 

In spite of the low predictive accuracy for the drag force in the tested practical 
situations, the quasi-geostrophic drag model results are valuable because : (a)  They 
describe correctly the variation of the drag with the parameter E and apparently 
provide the lower limit of the linear drag, while DO gives the upper limit. (b)  They 
rehabilitate the reliability of the linear theory, by indicating that the discrepancies 
reported by Maxworthy (1968) and Bush et al. (1995) are not a failure of the linear 
approach for R o  - lop3 - - rather a result of the oversimplified treatment of the 
Stewartson layers in the derivation of Do. Moreover, they indicate the modifications 
associated with the non-zero Rossby number. (c) They describe, at least qualitatively, 
the important transition region from the ‘short’-container geostrophic case, E + 0, 
where DO applies, to the ‘long’-container case, E > 1, where D w (n/24)EW2/H, see 
Hocking et a/. (1979), Ungarish & Vedensky (1995). 

However, both Maxworthy (1968) and Bush et al. (1995) reported some wavy streak- 
line patterns that apparently cannot be explained by the present slightly nonlinear 
steady-state model. Maxworthy (1968 $995, personal communication) suggests that 
these oscillations are manifestations of ‘undular inertial waves’, accompanied by an 
acceleration and a decrease of pressure of the flow after it has passed the equator into 
the lower region. Such a behaviour is likely to contribute a positive drag correction to 
the present results, but a quantitative estimate is not available. Oscillations may also 
indicate instability, so that the stability problem of these flows remains an important 
open question. The present results may serve as starting ‘unperturbed’ flow fields for 
stability analysis. 

Extensions of the present model to additional configurations non-symmetric with 
respect to z ,  e.g. an upper free surface or drops not in the middle position, are possible 
but awkward, because the angular velocity of the torque-free particle (which is not 
a constant for drops) and the boundary condition w(r = 1) are not known a priori. 
However, this is an interesting topic for further investigation, especially in the context 
of asymmetric drops, and the calculations presented in Appendix D are a first step 
in this direction. 
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It appears now that the main reason for the discrepancy between the available 
drag prediction model and the experiments (assuming the flow is stable) is the fact 
that ( E H ) ’ i 3  is not sufficiently small in the practical devices. New experiments, or 
numerical solutions of the full Navier-Stokes equations, in which this parameter is 
small, are necessary for verifications. 

It is now more evident that for practical values of E and H the available asymptotic 
analysis of the linear problem (i.e. the classic combination of cores, Ekman boundary 
layers and Stewartson free shear layers) is not sufficiently accurate for drag predictions. 
Formally, this could be anticipated: in addition to the requirement that (EH)’13 is 
fairly small, the representative thickness ratio of the Ell3 to the Ell4 layers which is 
(E/H2) l /12  should also be small, but this is not satisfied in practical configurations 
( (E/H2)’ /12 > 0.29 in Maxworthy 1968); actually, a systematic expansion for a 
sphere would also require that El/”, and perhaps E at even smaller powers is very 
small, see Greenspan (1968, end of $2.187 ). Nevertheless, one could hope that the 
actual contribution of the higher-order terms, beyond these included in (16), is small, 
especially for a spherical particle where the geostrophic angular velocity already 
satisfies the boundary conditions. The present study seems to exclude this possibility. 
This provides further motivation for attempting the solution of the complete linear 
problem for a sphere, either by analytical means (like Ungarish & Vedensky 1995 
did for a disk, and the method used by Tanzosh & Stone 1994 for a sphere in the 
unbounded domain seems a good candidate) or by numerical means. The resulting 
drag force will most likely be in fair agreement with the available experiments at 
small Ro. 

The author had illuminating discussions with Professors H. P. Greenspan, D. W. 
Moore, H. A. Stone and J. W. M. Bush. The research was partially supported by the 
Fund for the Promotion of Research at the Technion. 

Appendix A. Brief derivation of (16) 
Consider the configuration of figure 12 for E q l  so that the Ekman layers are very 

thin. 
The interface Z : z - f ( r )  = 0 divides the embedding fluid ( I )  and the embedded 

particle (drop, bubble) (11). To return to the notation of the paper, the index ( I )  
should be deleted and the index (11) replaced by DROP.  In the cores the azimuthal 
velocities v i  ( i  = I or I I )  are z-independent, and the azimuthal momentum equation 
gives 

d l d  
dr r dr 

2u. = E - - -rvi, 

hence ui = o(vi)  with respect to the small E ,  because the radial length scale is much 
larger than Eli2.  

The Ekman layers, assumed thin, on the top wall and on the interface match 
these cores to the boundary conditions: no-slip on solid wall, velocity and stress 
continuity on the interface. The layers above and below Z have different thicknesses, - ( v ~ * / Q * ) ~ / ~ ,  therefore the ratio v;/v;, plays a role in the analysis; since the stress 
involves p; = v1*pl, the ratio p;/pf, also enters the results. 

Let ( be the local coordinate normal to the boundary, y be the angle between [ 
and z ,̂ and 0 and v“ denote the Ekman layer velocity corrections in the longitudinal 

7 There is a small misprint in the book: Ell7 should be E2/7 .  
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FIGURE 12. Sketch of the Ekman layers and cores ( I outside the particle, I1 inside the drop). 

and azimuthal directions, respectively. The Ekman-type balance between Coriolis and 
viscous terms in region i = I , l I  can be expressed as 

where i = f l  and, again, the asterisk denotes dimensional variables. 
It is convenient to introduce the stretched coordinate : 

Y' Y 

and notice that (A 2) has solutions of the form C exp +(1+  i)(cos y)1/2(3)'/2r]. [ 
The particular solutions 0 + iv" corresponding to the configuration of figure 12 are 

- iq  exp [(l + i)f] on the top wall; (A 3) 

(A 4) 12 -1/4" i(qr - Q ) K  exp [-( 1 + i)( 1 + f ) [] above the interface; 

1 / 2  

-i(vrr - 01)- K exp -ll4 (g) t ]  below the interface; P 
where 

P = (P;r/P;)(v;r/v;)1'2, K = P/(1 + PI- 
The volume transport in these layers, in the longitudinal direction, is given by 

Q = Re{E'12 @'(0 + iv")df}, therefore 

(A 5 )  QT = - i E ' / 2 ~ r ,  Qf = - i E ' / 2 ( ~ r  - ~ r r ) ( l  + f f2 ) 1/4K 

(tmin is -co or 0, and f m x  is 0 or co, according to the location of the layer with respect 
to i: = 0). Consider now the volume balance in the cylinder of radius r closed by the 
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upper wall and by the interface. The wall moves towards the interface with velocity 
1, thus pushing fluid radially outwards via the Ekman layers and the core, 

(A 6) 

We substitute (A 5) and (A 1). If the configuration is symmetric with respect to z ,  
then vI I  = 0 is necessary for counterbalancing the Q f l  flux on the mirror image of 2 .  
In this case, letting vI = E-’/’wr, we obtain, after some arrangement, (16). 

For a solid particle the continuity conditions on C are replaced by the usual no-slip 
conditions. This leaves (A3) unchanged, but in (A4) IC should be replaced by 1.t On 
the other hand, for an inviscid particle (bubble) no Ekman layer appears on 2. This 
leaves, again, (A3) unchanged, but in (A4) K should be replaced by 0. This indicates 
that, for the flow outside the particle, the results (A5) are reliable for 0 < K < 1. 
However, if the flow inside the drop is of interest, the validity of the core-Ekman 
layer decomposition there becomes invalid if ( ~ f ~ / Q * ) ’ / ~ / a *  > 0.1, say. The viscous 
limit of the internal flow is discussed by Bush et al. (1995) 

If v1 and v l I  are known (A6) provides the radial velocity in the core, uI .  In 
particular, for v I I  = 0 and oI = E-‘/2wr we get in core I 

nr2 x 1 = 2xr [QT + Q,“ + ur[H - f(r)l] . 

u = { 1 + [I + K ( I +  f’2)‘/4]w}r/2~[1 - f(r)/H]. (A 7) 

We introduce the stream function y defined by ru = dtp/dz with value 0 on the 
particle. On account of (A5) and (A7) this can be expressed as 

for f+(r)  < z < H - ,  0 < r < 1. The last term is the contribution of the Ekman layer 
on the particle. We note in passing that y = -4r2 on the upper wall whose axial 
velocity is -1, while (A8) gives for z = H -  a difflrent value due to the Ekman layer 
on that wall. The axial velocity outside the Ekman layers is given by 

Appendix B. The solution of (41)-(42) 
The numerical solution of 

G”(s) - C(S)/S”~ = -1, s 3 0, 

with G(0) = O,G(S)/S’/~ = 1 for s -+ m, encounters obvious difficulties for s ---f 0. 
Therefore, we use standard numerical initial-value problem solvers for s 2 0.01, and 
for smaller s we introduce the expansion 

G(s) = G’(0) [S  + ~ 1 9 ~ ~ ’ ~  + ~ 2 s ~ ’ ~  + . . -1 - [is2 + + b 2 ~ ~ ~ / ~  +. . .] . (B I) 

Substitution in the equation gives the coefficients al = 16/77,bl = 8/165,a2 = 
960/72765,b2 = 224/114345. The value G’(0) = 1.013292 is found by shooting from 
s = 0.01 to match the boundary conditions for large s. We note that (B 1) gives G(0.5) 
with four correct digits and G( 1) with three correct digits. 

t For a solid particle u I I / r  must be a constant. This is consistent with 011 = 0 here. 
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Appendix C. Finite-difference formulation of (16) 
We introduce the grid with interval 6 r  = 1/N, the staggered grid, 

1 ri = 6 r ( i -  T ) ,  i = O,l, ..., N + 1, 

and use central differences approximations to replace (16) by 

1 3 
2ri6r - 204 + oi-1) + -(wi+l - oi-1) - Sioi  = 1, i = 1,2 ,... N ;  

with 

COO = cr)l; wN+1 = - O N ;  

(here the index 0 does not mean the geostrophic approximation), where 

qi = 2c2[1 - f ( r i ) / H ] ;  

This yields a standard three-diagonal system for the unknowns wl, 0 2  . . . wN which 
we solve by direct elimination. 

For the nonlinear modification (48)-(49) we define qi as the right-hand side of (C 4) 
divided by F(r i ) ,  and solve this nonlinear version of (C 2) by iterations, starting with 
of), until convergence of oY)/oi(k-’) for all i is achieved. The linear oi turns out to be 
a good choice for of). However, the iterations for the lower side begin to diverge for 
some larger values of Ro; continuation from one converged case to one with larger 
Ro improved the range of convergence. 

Appendix D. Some results with asymmetric conditions. 
The symmetry simplifications of the model may be violated by the geometry of 

the configuration and by the inertial terms that affect differently the upper and lower 
regions. Here we attempt to incorporate the asymmetric effects of off-middle particle 
position and of the inertial modifications in the shear layers. The evident results in 
the flow field are that the particle acquires an angular velocity and the outer region 
r > 1 is also set in motion. 

Consider a symmetric solid particle whose equatorial plane is at distance H ,  from 
top the plate and Hi from the bottom plate, such that 

H, + Hi = 2H = Ho. 

We distinguish between the upper (top), lower (bottom) and outer cores, denoted by 
u,l and 0, respectively. The torque-free particle rotates with up. The equations of 
motion, cf. (48)-(49), are now 
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where 

(D 4) ' 2  114 '2 1/4 & = - l + ( l + f  ) up, R l = l + ( l + f  ) up. 
The boundary conditions, following Moore & Saffman (1969) , are 

(D 5) 
dw 
- = 0 at r = 0, o, = cr)l = coo at r = 1, 
dr 

do, d o /  do0 
dr dr dr H,---+H~---=Ho-aatr=l. 

In addition, the torque on the particle, see (53), must vanish. 
We solved the system by the finite-differences method outlined in Appendix C, 

imposing the coo = 0 condition at r = 2. We note in passing that for the sphere 
configuration the last term on the left-hand side of (Dl)  behaves like o[2(1 - r)]-'I4 
near r = 1- and now, in contrast with the symmetric case, o ( r  = 1) # 0. The use 
of the staggered grid (Cl) takes proper account of this difficulty without special 
adjustments. From the analytical point of view, see Appendix B, this is reproduced 
by the addition of terms G(0)[1+ ( 16/21)s7I4 + ...I in the solution of the sidelayer (Bl) 
when the boundary condition G(0) # 0 is imposed, where G is defined as (-o+cop)/B, 
see (40). 

Some results are presented below, table 2(a-d) for a disk and a sphere, at the 
middle and two off-middle positions, in the linear and slightly nonlinear (Ro = 0.003) 
cases. The other parameters are fixed as 

E = 0.4 x lop4, H = 5 (1.e. E = 0.126). 
These calculations support the conjecture that the middle-position symmetric con- 

ditions for the particle are relevant for the understanding of the drag force behaviour 
in practical circumstances. Indeed, when these simplifications are removed the varia- 
tion of the drag is about 10 times smaller than the deviation from the geostrophic Do 
introduced by the incorporation of the shear layers. 

This confirms the expected hierarchy of effects on the drag: the major contribution 
is from the geostrophic coo; the major correction to the geostrophic drag comes 
from the thick Stewartson shear layers in the region 1 - E < r < 1, as calculated 
in the symmetric ( H ,  = Hl) linear (Ro = 0) case; the correction to the thickness of 
these shear layers comes from the asymmetry ( H ,  # H I  and/or Ro > 0). Thus, the 
asymmetry effects can be regarded as a correction to the correction to the geostrophic 
drag, and, in the range of parameters tested here, are rather small. 

The range H,/H = 0.5-1.5 covers most of the test section in Maxworthy's experi- 
ments: the central 25 cm of a container of 40 cm. The observed velocity ~ hence drag 

~ was almost constant in this region (Maxworthy 1995, personal communicaiton; 
recall that the experimental accuracy was estimated as f2.5%). This can be consid- 
ered as experimental support for the conjecture that the middle position drag has 
global relevance. 

The value of RoEp2I3 covers the experimental cases used for comparison, see 
table 1. 

We note that the dependency of (DIDO - 1) on H,/H/ ,  for a disk at small E and 
Ro = 0, was estimated by Ungarish & Vedensky (1995, Appendix B, and in particular 



248 M. Ungarish 

(a) ( b )  

HuIH 1.5 1 0.5 1.5 1 0.5 
UP 0.038 0.000 -0.038 -0.036 -0.067 -0.11 
w(r = 1) -0.041 0.000 0.041 -0.12 -0.080 -0.048 

D/Do - 1 -0.38 -0.41 -0.38 -0.42 -0.44 -0.42 
D 0.967 0.924 0.967 0.912 0.877 0.907 

(c) (4 
HuIH 1.5 1 0.5 1.5 1 0.5 
WP 0.034 0 -0.034 -0.019 -0.048 -0.081 
w(r = 1) -0.036 0 0.036 -0.102 -0.065 -0.034 
D 0.909 0.875 0.909 0.871 0.841 0.867 
D / D o  - 1 -0.29 -0.32 -0.29 -0.32 -0.35 -0.33 

TABLE 2. Some results for disks and spheres at the middle and two off-middle positions: 
(a) disk, Ro = 0; ( b )  disk, Ro = 0.003 (i.e. RoE-'12 = 0.47, RoEP2l3 = 2.56; (c) sphere, Ro = 0; 
( d )  sphere, Ro = 0.003. 

equation (B30)). Table 2(a) and other similar results not shown here are in good 
agreement with that estimate. 

Remark: If we estimate the drag at the middle position with inertial correction while 
still assuming wp = 0 and w(r = 1) = 0, we obtain D/Do - 1 = -0.42 for the disk 
and -0.33 for the sphere, quite close to the more accurate values given in tables 2(b) 
and 2(d). 
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